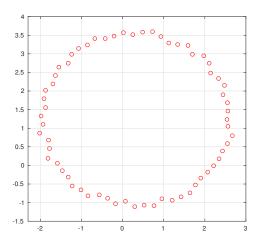


Aufgabe 4 : _____


Blatt 8: nichtlineare Ausgleichsrechnung - Regression MNEU

nur praktischer Teil: Aufgabe 1 :	
Auf	gabe 2 :
	ren Sie das Skript aus Aufgabe mit Matlab aus und machen Sie sich die einzelnen nponenten klar. Diskutieren Sie das gerne mit Ihrem Sitznachbarn.
Auf	gabe 3 :
(a)	Berechnen Sie die Lösung aus Blatt 7 Aufgabe 1 mit lsqnonlin. Fügen Sie die entsprechenden Punktewerte ein und passen Sie die Ansatzfunktion an. Was ist die Lösung vom Isqnonlin? Wie lautet die Lösungsfunktion?
(b)	Verfahren Sie genauso mit Aufgabe 2 aus Blatt 7.
(c)	Wählen Sie als Ansatzfunktion nun einen Repräsentanten aus dem ganzen ${ m I\!P}_2$, also
	$p(x) = a_2 x^2 + a_1 x + a_0.$
	Was stellen Sie fest?
(d)	(i) Laden Sie die Punktepaare aus der Datei Daten/Filip.dat und führen Sie damit Schritt (c) abermals durch.
	(ii) Mit dem Aufruf [c res] = lsqnonlin(@Residuum,c0); in Zeile 9 von MyReg.m erhalten Sie eine zusätzliche Information bezüglich des resultierenden Residuums. Lesen Sie in >> help lsqnonlin nach, was der Wert res genau beinhaltet.
	(iii) Ermitteln Sie die Residuenwerte von Teil (a) bis (d).
(e)	Wer die Ansatzfunktion findet, mit dem kleinsten Quadratfehler (res aus lsqnonlin) erhält einen Preis! (Sie können auch mit den Startwerten wackeln; Einsen statt Nullen oder so.)

Bei dieser Aufgabe betrachten wir eine Menge von Daten, die eigentlich einem Kreis mit Radius $R\in {\rm I\!R}$ und Mittelpunkt $M=(m_x,m_y)\in {\rm I\!R}^2$ angehören. Leider sind die Messdatein ein wenig verrauscht. Huch! Gesucht sind nun Radius und Mittelpunkt des Kreises

$$R\left(\frac{\cos(t)}{\sin(t)}\right) + M\,,$$

so dass der Quadratfehler

$$Q(R, m_x, m_y) = \sum_{i=1}^{N} res_i^2(R, m_x, m_y)$$

minimiert wird.

(a) Wie lautet hier das Residuum $\operatorname{res}_i(R,m_x,m_y)$?

Tipp: Der Abstand eines jeden Punktes x des Kreises zum Mittelpunkt M, also $\|x_i - M\|$, sollte ja gleich dem Radius sein. Man will also die Differenz dieses Abstands zum Radius R minimieren.

(b) Implementieren Sie dieses und berechnen Sie die Lösungen für R , m_x und m_y .